

1 / 25 Chainsulting Audit Report © 2021

DIA DATA

DRM NFT

SMART CONTRACT AUDIT
04.09.2021

Made in Germany by Chainsulting.de

2 / 25 Chainsulting Audit Report © 2021

Table of contents

1. Disclaimer .. 4
2. About the Project and Company .. 5

2.1 Project Overview .. 6
3. Vulnerability & Risk Level .. 7
4. Auditing Strategy and Techniques Applied .. 8

4.1 Methodology .. 8
4.2 Used Code from other Frameworks/Smart Contracts .. 9
4.3 Tested Contract Files ... 10
4.5 Metrics / Source Lines & Risk .. 12
4.6 Metrics / Capabilities .. 13

5. Scope of Work ... 15
5.1 Manual and Automated Vulnerability Test ... 16
5.1.1 Weak PRNG .. 16
5.1.2 Unchecked token transfer .. 17
5.1.3 Division before multiplication ... 18
5.1.4 Unsecure arithmetic operations .. 18
5.1.5 Missing zero-address check .. 19
5.1.6 Hardcoded URI .. 20

5.1.7 Violated naming conventions .. 20
5.1.8 Public functions could be external .. 21
5.1.9 Missing natspec documentation ... 21
5.1.10 Unexplicit variable typs .. 22

3 / 25 Chainsulting Audit Report © 2021

5.1.11 Variable burn address .. 22
5.1.12 Unused variable .. 23
5.1.13 Unnecessary alias variable ... 23

5.2 Verify claims .. 24
6. Executive Summary ... 25
7. Deployed Smart Contract .. 25

4 / 25 Chainsulting Audit Report © 2021

1. Disclaimer

The audit makes no statements or warrantees about utility of the code, safety of the code, suitability of the business model, investment
advice, endorsement of the platform or its products, regulatory regime for the business model, or any other statements about fitness of
the contracts to purpose, or their bug free status. The audit documentation is for discussion purposes only.

The information presented in this report is confidential and privileged. If you are reading this report, you agree to keep it confidential,
not to copy, disclose or disseminate without the agreement of D.I.A. e.V. . If you are not the intended receptor of this document, remember
that any disclosure, copying or dissemination of it is forbidden.

Major Versions / Date Description
0.1 (04.06.2021) Layout
0.4 (04.06.2021) Automated Security Testing

Manual Security Testing
0.5 (08.06.2021) Verify Claims and Test Deployment
0.6 (08.06.2021) Testing SWC Checks
0.9 (09.06.2021) Summary and Recommendation
1.1 (09.06.2021) Final document
2.0 (04.09.2021) Re-check
2.1 (TBA) Added deployed contract

5 / 25 Chainsulting Audit Report © 2021

2. About the Project and Company

Company address:

D.I.A. e.V. (Association)
Baarerstrasse 10
6300 Zug
Switzerland

Website: https://diadata.org

Twitter: https://twitter.com/diadata_org

Medium: https://medium.com/@diadata_org

Telegram: https://t.me/DIAdata_org

LinkedIn: https://www.linkedin.com/company/diadata-org

GitHub: https://github.com/diadata-org/diadata

Reddit: https://www.reddit.com/user/DIAdata

YouTube: https://www.youtube.com/c/DIAdata_org

6 / 25 Chainsulting Audit Report © 2021

2.1 Project Overview

DIA (Decentralised Information Asset) is an open-source oracle platform that enables market actors to source, supply and share trustable
data. DIA aims to be an ecosystem for open financial data in a financial smart contract ecosystem, to bring together data analysts, data
providers and data users. In general, DIA provides a reliable and verifiable bridge between off-chain data from various sources and on-
chain smart contracts that can be used to build a variety of financial DApps. DIA is the governance token of the platform. It is currently
based on ERC-20 Ethereum protocol. The project was founded in 2018, while the token supply was made available to the public during
the bonding curve sale from Aug. 3 through Aug. 17, 2020, where 10.2 million tokens were sold.

Who Are the Founders of DIA?
The DIA association was co-founded by a group of a dozen people, though Paul Claudius, Michael Weber and Samuel Brack are the
leaders. Claudius is the face of the project and its lead advocate, sometimes also mentioned as a CBO. He has a masters degree in
international management from ESCP Europe and a bachelors in business and economics from Passau University. Apart from working
on DIA, he is also a co-founder and CEO of BlockState AG and c ventures. Before crypto, he had worked as director for a nutrition
company called nu3. Weber is the project's CEO. He holds a asters in management from ESCP Business School and an equivalent to
a bachelors in economics and physics from University of Cologne. He has worked in several banks and financial institutions before
turning to crypto, where he founded such projects as Goodcoin, myLucy and BlockState. Samuel Brack serves DIA in the role of CTO.
Like both Claudius and Weber, he shares the same position at BlockState. He has a masters degree in computer science from Humboldt
University of Berlin, where as of January 2020, he is still studying for his PhD.

What Makes DIA Unique?
DIA aims to become the Wikipedia of financial data. It specifically addresses the problem of dated/unverified/hard to access data in the
world of finance and crypto, especially DeFi, while proposing to solve it via system of financial incentives for users to keep the flow of
open-source, validated data streams to the oracles up and running. The current design of oracles, DIA argues, is non-transparent,
difficult to scale and vulnerable to attack. The DIA governance token will be used to fund data collection, data validation, voting on
governance decisions and to incentivize the development of the platform. Users can stake DIA tokens to incentivise new data to appear
on the platform, but access to historical data though DIA is free.

7 / 25 Chainsulting Audit Report © 2021

3. Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit vulnerability, and the impact of that event on the organization or
system. Risk Level is computed based on CVSS version 3.0.

Level Value Vulnerability Risk (Required Action)
Critical 9 – 10 A vulnerability that can

disrupt the contract
functioning in a number
of scenarios, or creates a
risk that the contract may be
broken.

Immediate action to reduce risk level.

High 7 – 8.9 A vulnerability that affects
the desired outcome when
using a contract, or provides
the opportunity to use a
contract in an unintended
way.

Implementation of corrective actions as soon as
possible.

Medium 4 – 6.9 A vulnerability that could
affect the desired outcome of
executing the contract in a
specific scenario.

Implementation of corrective actions in a certain
period.

Low 2 – 3.9 A vulnerability that does not
have a significant impact on
possible scenarios for the
use of the contract and is
probably subjective.

Implementation of certain corrective actions or
accepting the
risk.

Informational 0 – 1.9 A vulnerability that have
informational character but is
not effecting any of the
code.

An observation that does not determine a level of risk

8 / 25 Chainsulting Audit Report © 2021

4. Auditing Strategy and Techniques Applied

Throughout the review process, care was taken to evaluate the repository for security-related issues, code quality, and adherence to
specification and best practices. To do so, reviewed line-by-line by our team of expert pentesters and smart contract developers,
documenting any issues as there were discovered.

4.1 Methodology

The auditing process follows a routine series of steps:

1. Code review that includes the following:
i.Review of the specifications, sources, and instructions provided to Chainsulting to make sure we understand the size,
scope, and functionality of the smart contract.

ii.Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential
vulnerabilities.

iii.Comparison to specification, which is the process of checking whether the code does what the specifications, sources,
and instructions provided to Chainsulting describe.

2. Testing and automated analysis that includes the following:
i.Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and
how much code is exercised when we run those test cases.

ii.Symbolic execution, which is analysing a program to determine what inputs causes each part of a program to execute.
3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability,
security, and control based on the established industry and academic practices, recommendations, and research.
4. Specific, itemized, actionable recommendations to help you take steps to secure your smart contracts.

9 / 25 Chainsulting Audit Report © 2021

4.2 Used Code from other Frameworks/Smart Contracts

Dependency / Import Path Source

@openzeppelin/contracts/access/Ownable.sol https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/access/Ownable.sol

@openzeppelin/contracts/math/Math.sol https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/utils/math/Math.sol

@openzeppelin/contracts/token/ERC20/ERC20.sol https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/token/ERC20/ERC20.sol

@openzeppelin/contracts/token/ERC1155/ERC1155.sol https://github.com/OpenZeppelin/openzeppelin-
contracts/blob/master/contracts/token/ERC1155/ERC1155.sol

10 / 25 Chainsulting Audit Report © 2021

4.3 Tested Contract Files

The following are the MD5 hashes of the reviewed files. A file with a different MD5 hash has been modified, intentionally or otherwise,
after the security review. You are cautioned that a different MD5 hash could be (but is not necessarily) an indication of a changed
condition or potential vulnerability that was not within the scope of the review

File Fingerprint (MD5)
./DIADataNFT.sol e84371bf242e82f7dc9fce6870cc9423
./DIASourceNFT.sol 8c71c936aebffa69281dea2709a5d2c1
./DIAGenesisMinter.sol f87bf1c75d1aeee0c970209f162ffe9f
./Strings.sol a2e804893783a443b836acf1ddd361a8

11 / 25 Chainsulting Audit Report © 2021

4.4 Metrics / CallGraph

View full version: https://chainsulting.de/wp-content/uploads/2021/09/solidity-metrics_dia.html

12 / 25 Chainsulting Audit Report © 2021

4.5 Metrics / Source Lines & Risk

13 / 25 Chainsulting Audit Report © 2021

4.6 Metrics / Capabilities
Solidity Versions
observed

🧪 Experimental
Features

💰 Can Receive
Funds

🖥 Uses
Assembly

💣 Has Destroyable
Contracts

0.8.0

(0 asm blocks)

📤 Transfers
ETH

⚡ Low-Level
Calls

👥
DelegateCall

🧮 Uses Hash
Functions

🔖
ECRecover

🌀
New/Create/Create2

yes

yes

Exposed Functions

This section lists functions that are explicitly declared public or payable. Please note that getter methods for public stateVars are not included.

🌐Public 💰Payable

30 0

External Internal Private Pure View

23 28 1 3 9

StateVariables

Total 🌐Public

25 21

14 / 25 Chainsulting Audit Report © 2021

4.7 Metrics / Source Unites in Scope

Typ
e File

Logic
Contrac
ts

Interfaces Line
s

nLine
s

nSLO
C

Comme
nt Lines

Comple
x. Score Capabilities

📝📚 contracts/DIAGenesisMinte
r.sol 2

113 113 79 12 113 🧮

📚 contracts/Strings.sol 1

28 28 24 1 18

📝 contracts/DIASourceNFT.s
ol 1

117 117 92 4 66 📤

📝 contracts/DIADataNFT.sol 1

208 208 153 16 128

📝📚 Totals 5

466 466 348 33 325 📤🧮

Legend: [➖]

• Lines: total lines of the source unit
• nLines: normalized lines of the source unit (e.g. normalizes functions spanning multiple lines)
• nSLOC: normalized source lines of code (only source-code lines; no comments, no blank lines)
• Comment Lines: lines containing single or block comments
• Complexity Score: a custom complexity score derived from code statements that are known to introduce code complexity (branches, loops, calls,

external interfaces, ...)

15 / 25 Chainsulting Audit Report © 2021

5. Scope of Work

The DIA Data Team provided us with the file that needs to be tested. The scope of the audit are the DRM NFT contracts.

The team put forward the following assumptions regarding the security, usage of the contracts:

• Source NFTs are held by data owners and are used to control the licensing of data to DIA API data users
• Only the owner of the Source NFTs should be able to create new categories
• Only the contract owner can generate new source NFTs
• Source NFTs can have parent source NFTs. In case a source NFT has multiple parents, its source rewards are split evenly between all

parents
• Data NFTs are minted by data users. They pay for the minting and participate by claiming future rewards from the minting pool
• The smart contract is coded according to the newest standards and in a secure way

The main goal of this audit was to verify these claims. The auditors can provide additional feedback on the code upon the client’s
request.

16 / 25 Chainsulting Audit Report © 2021

5.1 Manual and Automated Vulnerability Test

CRITICAL ISSUES
During the audit, Chainsulting‘s experts found no Critical issues in the code of the smart contract.

HIGH ISSUES
5.1.1 Weak PRNG
Severity: High
File(s) affected: DIADataNFT.sol
Status: FIXED (The randomness is not important for the use-case)

Attack / Description Code Snippet Result/Recommendation
In the current
implementation, there is a
weak source of randomness
due to the use of
block.timestamp and
blockhash. These parameters
can be influenced by miners to
some extent so they should be
avoided.

Line 13:
return uint8(uint256(keccak256(abi.encodePac
ked(block.timestamp, blockhash(block.number
- 1), msg.sender, seed)))%256);

We highly recommend not to use block.timestamp,
now or blockhash as a source of randomness.

17 / 25 Chainsulting Audit Report © 2021

5.1.2 Unchecked token transfer
Severity: High
File(s) affected: DIADataNFT.sol, DIASourceNFT.sol
Status: FIXED

Attack / Description Code Snippet Result/Recommendation
In the current
implementation, the return
value of the external
transferFrom function call is
not checked. Several tokens
do not revert in case of failure
and return false.

DIADataNFT.sol Line 118:
ERC20(paymentToken).transferFrom(msg.sender,
 burnAddress, burnAmount);

DIADataNFT.sol Line 120:
ERC20(paymentToken).transferFrom(msg.sender,
 mintingPool, mintingPoolAmount);

DIADataNFT.sol Line 133:
ERC20(paymentToken).transferFrom(msg.sender,
 diaSourceNFTImpl.sourcePool(), diaSourceNFT
Impl.getSourcePoolAmount(currSourceNFTId));

DiaSourceNFT.sol Line 108:
ERC20(paymentToken).transferFrom(sourcePool,
 claimer, payoutDataTokens);

We highly recommend to use OpenZeppelins
SafeERC20, or ensure that the
transfer/transferFrom return value is checked.

18 / 25 Chainsulting Audit Report © 2021

MEDIUM ISSUES
5.1.3 Division before multiplication
Severity: Medium
File(s) affected: DIADataNFT.sol
Status: FIXED

Attack / Description Code Snippet Result/Recommendation
Solidity integer division might
truncate. As a result,
performing multiplication
before division can sometimes
avoid loss of precision.

Line 173:
uint rawClaim = (ownRawWeight / sumAllWeight
s) * getPoolAmountAtMint(maxNumMinted);

Line 181:
uint rawClaimLastClaim = (ownRawWeightLastCl
aim / sumAllWeightsLastClaim) * getPoolAmoun
tAtMint(numMintedLastClaim);

We highly recommend ordering multiplications
before division.

5.1.4 Unsecure arithmetic operations
Severity: Medium
File(s) affected: DIADataNFT.sol, DIASource.sol
Status: FIXED (Solidity 0.8.0 has integrated SafeMath)

Attack / Description Code Snippet Result/Recommendation
In the current implementation
arithmetic operations are
unsecure due to potential
under- or overflow.

overall We recommend using OpenZeppelins library
SafeMath for all arithmetic operation to ensure safe
calculations.

19 / 25 Chainsulting Audit Report © 2021

LOW ISSUES
5.1.5 Missing zero-address check
Severity: LOW
File(s) affected: DIADataNFT.sol, DIASourceNFT.sol
Status: FIXED

Attack / Description Code Snippet Result/Recommendation
In the current
implementation, there are
several addresses set without
checking for the zero address.
This can lead to unintended
behaviour.

DIADataNFT.sol Line 51 & 52 & 55:
paymentToken = _paymentToken;
burnAddress = _burnAddress;
mintingPool = _mintingPool;

DIADataNFT.sol Line 74:
burnAddress = newBurnAddress;

DIASourceNFT.sol Line 31:
dataNFTContractAddress = _dataNFTContractAdd
ress;

DIASourceNFT.sol Line 39:
dataNFTContractAddress = newAddress;

We recommend checking addresses for the zero
address with require statements before setting them
as a variable.

20 / 25 Chainsulting Audit Report © 2021

5.1.6 Hardcoded URI
Severity: LOW
File(s) affected: DIASourceNFT.sol
Status: ACKNOWLEDGED

Attack / Description Code Snippet Result/Recommendation
In the current
implementation, there is a
hardcoded URI which gives
you less flexibility in the future
or the domain api.diadata.org
can be hijacked.

Line 26 - 28
constructor(address newOwner)
ERC1155("https://api.diadata.org/v1/nft/source_
{id}.json") {
 transferOwnership(newOwner);
 }

We recommend to put the URL part
(api.diadata.org/v1/nft/source_{) into a string as
well, so the Owner is able to adjust it, in case of
emergency or an upgrade.

INFORMATIONAL ISSUES

5.1.7 Violated naming conventions
Severity: Informational
File(s) affected: DIADataNFT.sol, DIASourceNFT.sol
Status: FIXED

Attack / Description Code Snippet Result/Recommendation
Solidity defines a naming
convention that should be
followed. In the current
implementation structs are
written in mixedCase.

DIADataNFT.sol Line 32:
struct dataNFTCategory {

DIASourceNFT.sol Line 15:
struct sourceNftMetadata {

We recommend following the solidity naming
conventions for better code readability. Structs
should be written in CapWords such as
DataNFTCategory. More information about naming
conventions on
https://docs.soliditylang.org/en/v0.4.25/style-
guide.html#naming-conventions.

21 / 25 Chainsulting Audit Report © 2021

5.1.8 Public functions could be external
Severity: Informational
File(s) affected: DIADataNFT.sol, DIASourceNFT.sol
Status: FIXED

Attack / Description Code Snippet Result/Recommendation
In the current implementation
several functions are declared
as public where they could be
external.

DIADataNFT.sol
Lines: 16, 65, 69, 73, 77, 86, 91, 138, 195

DIASourceNFT.sol
Lines: 34, 38, 42, 47, 57, 84, 92, 102

We recommend declaring functions as external for
better code readability.

5.1.9 Missing natspec documentation
Severity: Informational
File(s) affected: DIADataNFT.sol, DIASourceNFT.sol, Strings.sol, DIAGenesisMinter.sol
Status: FIXED

Attack / Description Code Snippet Result/Recommendation
Solidity contracts can use a
special form of comments to
provide rich documentation for
functions, return variables and
more. This special form is
named the Ethereum Natural
Language Specification Format
(NatSpec).

NA It is recommended to include natspec
documentation and follow the doxygen style
including @author, @title, @notice, @dev, @param,
@return and make it easier to review and
understand your smart contract.

22 / 25 Chainsulting Audit Report © 2021

5.1.10 Unexplicit variable typs
Severity: Informational
File(s) affected: DIADataNFT.sol
Status: FIXED

Attack / Description Code Snippet Result/Recommendation
In the current implementation
all integer variables have an
unexplicit type (uint).

Overall

It is recommended to use explicit variable
declaration such as uint8 or uint256. It improves
code readability and can help to make sure
variables have a intended size.

5.1.11 Variable burn address
Severity: Informational
File(s) affected: DIADataNFT.sol
Status: FIXED

Attack / Description Code Snippet Result/Recommendation
In the current implementation
the burnAddress variable is set
to an address passed to the
constructor. It makes it
possible to pass other
addresses instead of the zero
address by contract creation to
claim tokens, which should be
burned.

Line 52:
burnAddress = _burnAddress;

It is recommended to set the burnAddress to the
zero address hardcoded in the contract. This leads
to a guaranteed burning of the tokens by sending
them directly to the zero address.

23 / 25 Chainsulting Audit Report © 2021

5.1.12 Unused variable
Severity: Informational
File(s) affected: DIADataNFT.sol
Status: FIXED

Attack / Description Code Snippet Result/Recommendation
In the current implementation
the sourcePoolAmount
variable is set in the
constructor but never used
again in the contract.

Line 56:
 sourcePoolAmount = _sourcePoolAmount;

It is recommended to remove all unused variables.

5.1.13 Unnecessary alias variable
Severity: Informational
File(s) affected: DIASourceNFT.sol
Status: FIXED

Attack / Description Code Snippet Result/Recommendation
In the current implementation
the sourcePool variable is set
to address(this) in the
constructor and in the contract
only used once.

Line 30:
sourcePool = address(this);

It is recommended to remove the alias variable
sourcePool and just use address(this). Removing
variables saves gas by contract creation.

24 / 25 Chainsulting Audit Report © 2021

5.2 Verify claims

5.2.1 Source NFTs are held by data owners and are used to control the licensing of data to DIA API data users
 Status: tested and verified ✅"#$

5.2.2 Only the owner of the Source NFTs should be able to create new categories
 Status: tested and verified ✅"#$

5.2.3 Only the contract owner can generate new source NFTs
 Status: tested and verified ✅"#$

5.2.4 Source NFTs can have parent source NFTs. In case a source NFT has multiple parents, its source rewards are split evenly
between all parents
 Status: tested and verified ✅"#$

5.2.5 Data NFTs are minted by data users. They pay for the minting and participate by claiming future rewards from the minting pool
 Status: tested and verified ✅"#$

5.2.6 The smart contract is coded according to the newest standards and in a secure way
 Status: tested and verified ✅"#$

25 / 25 Chainsulting Audit Report © 2021

6. Executive Summary

UPDATED Sep. 04.2021

Two (2) independent Chainsulting experts performed an unbiased and isolated audit of the smart contract codebase. The final debriefs
took place on the September 04, 2021.

The main goal of the audit was to verify the claims regarding the security of the smart contract and the claims inside the scope of work.
During the audit, no critical issues were found after the manual and automated security testing.

7. Deployed Smart Contract

PENDING

